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Abstract—We introduce Circuit Structure Mutation, a simple
but effective mutation-based testing approach, for testing hard-
ware model checkers. The key idea is to mutate the existing
And-Inverter Graph (AIG) circuit by manipulating the relations
among the components in the graph while preserving the va-
lidity of the mutant. Based on Circuit Structure Mutation, we
implemented a feedback-guided testing tool named Hammer. In
our evaluation, Hammer shows its effectiveness on finding bugs,
increasing test coverage, and finding performance optimization
chances, which can help the hardware model checker developers
improve the reliability and the performance of their tools.

Index Terms—Hardware Model Checking, Software Testing,
Test Case Generation

I. INTRODUCTION

Model checking is a well-known technique for verifying
the correctness of the software and hardware systems [1], [2].
Given a property P and a model M, model checking is to check
whether P holds on M. If P is violated on M, a counterexample
can be given to evidence the property violation. Hardware
model checkers are the tools particularly for verifying hard-
ware designs automatically. Along with the recent significant
progress in this field, hardware model checkers have been
widely used in both industry and academia [3], [4], [5], [6].

To encourage the improvement of hardware model checkers,
Hardware Model Checking Competition (HWMCC) [7] was
established. The HWMCC benchmarks consist of realistic
hardware designs from both industry and academia. The per-
formance and the reliability of the participant hardware model
checkers are evaluated on these benchmarks. The HWMCC
benchmarks also become the test suite for testing the checkers
while developing the hardware model checkers. However,
since it is difficult to collect new benchmarks, the developers
of hardware model checkers are not able to validate and
improve the tools beyond the HWMCC benchmarks.

In fact, the developers of hardware model checkers suffer
from reliability issues and performance regressions during the
development. For example, unsoundness issue is a kind of
reliability issue in hardware model checkers. It makes checkers
produce incorrect checking results and threats the safety of the
hardware designs under verification. Runtime crash is another
kind of reliability issue. It obstructs the checking process and
causes that the hardware designed cannot be verified. The
performance regressions may appear when the developer adds
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optimizations or modifies code in the checker. These updates
could make the new version significantly slower than the old
version on some cases. Due to the limitation of the existing
benchmarks, these issues and regressions cannot be quickly
addressed before using in wild. Hence, an automated tool that
can find out the reliability issues and performance regressions
will be helpful for the hardware model checker development.

In this paper, we introduce a simple but effective mutation-
based testing approach called Circuit Structure Mutation,
to automatically uncover reliability issues and performance
regressions in the hardware model checkers. The key idea
of this approach is to manipulate the relations among the
components in the And-Inverter Graph (AIG) while preserving
the validity of the mutant. The traditional mutation-based
testing approaches cannot be applied for testing hardware
model checkers, since they will generate the mutants that
correspond to invalid hardware designs that will be rejected
by the hardware model checkers at early stage. Besides,
we enhance Circuit Structure Mutation with feedback-guided
strategy to make it increase test coverage and find performance
optimization chances more efficiently in practice.

Based on Circuit Structure Mutation, we implement a
feedback-guided testing tool called Hammer and evaluate
Hammer on testing three state-of-the-art hardware model
checkers ABC [8], nuXmv [9] and AVY [10]. The results show
that Hammer is promising. Hammer find 10 unique issues in
these hardware model checkers and can significantly increase
the test coverage and effectively find potential optimization
chances. The performance of Hammer is significantly better
than the only existing hardware model checker testing tool
aigfuzz. In this sense, Hammer provides a novel way for
testing hardware model checkers to complement aigfuzz.

In summary, we make the following contributions:
• We propose Circuit Structure Mutation, a simple but

effective approach to generate test inputs and benchmarks
for hardware model checkers.

• We enhance Circuit Structure Mutation with feedback-
guided strategy to increase test coverage and find more
performance optimization chances.

• We implemented Hammer, a tool for testing hardware
model checkers, based on Circuit Structure Mutation,

• In the evaluation, we found 10 unique bugs in three
hardware model checkers using Hammer and show that
the feedback-guided strategy works for enhancement.



This paper is organized as follows: Section II introduces the
related work. Section III illustrates Circuit Structure Mutation
with an example. Section IV introduces the definition of this
approach, describes the feedback-guided mutation algorithm
and the implementation of Hammer. Section V shows the
results of the empirical evaluation on Hammer and compares
Hammer with aigfuzz. Section VI concludes this paper.

II. RELATED WORK

Mutation-based testing. Mutation-based testing is an auto-
matic software testing technique for discovering software
vulnerabilities by randomly mutating existing test inputs to
generate a large amount of new test inputs [11]. Such test
inputs could be malformation, so that they could trigger the
corner cases in the software being tested. Coverage-guided
testing is an enhanced testing technique that uses the code
coverage information to generate more diverse test inputs
for covering more program statements and paths. AFL [12]
is a representative coverage-guided mutation-based testing
tool. The basic idea of AFL is to mutate the seed files to
generate new test inputs, and then incorporate the mutants
that cover new paths into the seed set for the following testing
process. AFL has shown its effectiveness in finding security-
oriented vulnerabilities in important open-source software,
such as Mozilla Firefox [13], MySQL [14], and OpenSSL [15].
However, AFL only works with bit, word, and token level
mutations. There is a group of following work related to
AFL. For example, FairFuzz [16] and Steelix [17] improve
the performance of AFL on the binary level. However, for the
software that requires structured inputs, traditional mutation-
based techniques usually generated syntactically invalid test
inputs that will be rejected by the software. Thus, several
syntax-aware mutation-based techniques were proposed for
generating syntactically valid inputs [18], [19], [20]. However,
syntax-aware mutation-based techniques still do not work for
testing hardware model checkers, since AIG has to be not only
syntax-valid but also reasonable for being a hardware design.
Therefore, a tailored semantic-aware mutation is required for
testing hardware model checkers.
Testing verification tools. Verification tools are usually for
verifying the correctness of models, software, and hardware.
However, the verification tools themselves should also be
validated. Recent work targets many different kinds of verifi-
cation tools. Zhang et al. [21] and Klinger et al. [22] proposed
reachability query and check synthesis approaches respectively
to generate test inputs for software model checkers and found
many bugs in them. FuzzSAT, CNFuzz, and 3SAT [23] are
fuzzers for SAT solvers, they found 14 bugs in 7 SAT solvers
via differential testing. SMT solvers are recently being inten-
sively tested. Many SMT testing tools have been proposed,
such as YinYang [24], [25], STORM [26], StringFuzz [27],
and BanditFuzz [28]. Despite the reliability of verification
tools that have been noticed, it still lacks tools and approaches
for testing hardware model checkers. The tool aigfuzz in
AIGER library [29] is the only existing automated testing
tool for hardware model checkers which is based on a purely

random generation strategy. However, due to the large genera-
tion space, the random generation strategy can rarely generate
the test inputs that explore deeper into the code. Thus, the
mutation-based strategies would be promising, while there are
no mutation-based tools for hardware model checkers yet.

III. ILLUSTRATIVE EXAMPLE

To address the above challenges, we propose Circuit Struc-
ture Mutation for testing hardware model checkers. It can
also be adapted to test the software that uses AIG as input,
such as Electronic Design Automation (EDA) and electronic
simulation software. In this section, we first introduce the
background of hardware model checker and then give an
illustrative example of our approach.

Background. And-Inverter Graph (AIG) is a directed, acyclic
graph for describing a logic circuit. A typical AIG only
contains two kinds of components: And gate and Inverter gate.
An arbitrary combinatorial logic circuit can be represented
by AIG. To support sequential logic, Latch gate is added to
AIG, which is called sequential AIG. Figure 1a shows an
example of AIG. AIGER format is proposed to provide a
unified input format of AIG for hardware model checkers.
The right side of Figure 1a presents an ASCII version AIGER
file corresponding to the circuit on the left side of Figure 1a.
The first line of AIGER file specifies the numbers of literal
(the identifier of the component) and each kind of component.
Term "aag" denotes this AIGER file is written in ASCII
version. The following numbers in the first line represent the
numbers of components, inputs, latches, outputs, And gates,
bad states, and invariant constraints in sequence. The following
lines specify the relations among the components in sequence.
For example, on the right side of Figure 1a, the second line
says the input is assigned to literal 2. The third line says the
latch is initialized to a constant 0, the next state of this latch is
defined by the literal 8, and the output of this latch is assigned
to literal 4. The following two lines say that the output of the
circuit is literal 4 and the invariant constraint is defined by
the literal 6 with a Inverter gate (represented by literal 7)
respectively. The last two lines represent two And gates. One
And gate uses literal 2 and constant 1 as the inputs and sets
the output to literal 6, another one uses literal 2 and literal 6
as inputs and sets the output to literal 8.

Illustrative example. The intuitive idea of Circuit Structure
Mutation is to manipulate the relations among the components
in AIGs. Figure 1b and Figure 1c give an intuitive example
of how Circuit Structure Mutation works for the circuit in
Figure 1a. First, Circuit Structure Mutation randomly selects
a component in Figure 1a, e.g., the invariant constraint with
literal 7 (in line 5), then randomly mutates literal 7 to literal 5,
which produces Figure 1b. Then, we continue Circuit Structure
Mutation on the mutant of Figure 1b. An And-gate with literal
8 is selected (in line 7), and one of its inputs is mutated
from literal 2 to literal 4, which produces Figure 1c. Note
that the mutants generated by Circuit Structure Mutation are
still syntax-valid and correspond to correct hardware designs,
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(c) Circuit structure mutant of Fig. 1b.

Fig. 1: Illustrative examples of Circuit Structure Mutation. Left side presents the AIGs in visual graph, right side presents the
AIGs in AIGER format.

therefore, they can be used as the test inputs for the hardware
model checkers. The test inputs can uncover crashes and
explore unsoundness issues by cross-checking the results of
two different hardware model checker implementations, which
is called differential testing.

In fact, the mutant in Figure 1c triggered an unsoundness
bug in AVY. We found this bug by comparing the results
of two hardware model checker implementations ABC and
AVY. For this mutant, ABC reports checking successfully
(safe), while AVY reports a counterexample (unsafe). After
checking the counterexample, it was identified as an issue in
AVY and has been reported to the developers by us. This
strategy is called differential testing which is used to uncover
unsoundness bugs in this paper. Interestingly, if we remove
the invariant constraint of the mutant in Figure 1c, it triggers
an assertion failure in AVY. In Section V, we will shows more
hardware model checker bugs found in our evaluation.

IV. APPROACH AND IMPLEMENTATION

In this section, we define Circuit Structure Mutation on
AIG. Then, introduce the feedback-guided strategy to enhance
Circuit Structure Mutation. Finally, describe the implementa-
tion of hardware model checker testing framework Hammer.

A. Circuit Structure Mutation

We first give the definition of Circuit Structure Mutation.
Given an AIG model G, which can be defined by a 5-tuple
〈I,O,A,L,Rreal〉, where:
• I is the set of Inputs in G.
• O is the set of Outputs in G.
• A is the set of And gates in G.
• L is the set of Latch gates in G.
• Rreal is the set of relations among the component in G.

Relation set Rin donates all possible relations of connecting
the inputs with other components:

Rin = (I ×O) ∪ (I ×A) ∪ (I × L)

Relation set Rmid donates all possible relations among gates:

Rmid = (L×A) ∪ (A× L) ∪ (A×A) ∪ (L× L)

Relation set Rout donates all possible relations of connecting
other components with outputs:

Rout = (I ×O) ∪ (A×O) ∪ (L×O)

Relation set Rreal of G satisfies the statement:

Rreal ⊆ Rin ∪Rmid ∪Rout

Then, we define Circuit Structure Mutation.



Algorithm 1: Circuit Structure Mutation
Input: AIGER file G
Output: Mutant G′

1 Procedure Mutate(G):
2 Comp, imax ← Parse(G)
3 while iterations > 0 do
4 comp← random.choice(Comp)
5 I ← range(0,imax)
6 i← random.choice(I)
7 comp′ ← comp.setInput(i)
8 Comp′ ← (Comp− {comp}) ∪ {comp′}
9 if not Comp′.hasCirDep() then

10 Comp← Comp′

11 iterations ← iterations − 1

12 G′ ← buildAIGwith(Comp)
13 return G′

Definition 1 (Circuit Structure Mutation): Given an AIG
model G = 〈I,O,A, L,Rreal〉, arbitrary relation (cx, cy) ∈
Rreal , and relation

r ∈ {(cz, cy)|(cz, cy) ∈ Rin ∪Rmid ∪Rout}

We construct a relation set R′real by

R′real = (Rreal − {(cx, cy)}) ∪ {r}

We say G′ = 〈I,O,A, L,R′real〉 is a circuit structure mutant.
The transforming process from G to G′ is called the circuit
structure mutation. Then, we give an example using Fig. 1.

Example 1 (Circuit Structure Mutation): Given the AIG
model G in Fig. 1a, the elements in the 5-tuple of G are
I = {i2}, O = {o4, o7}, A = {a6, a8}, L = {l4}, and Rreal =
{(a8, l4), (l4, o4), (a6, o7), (i2, a6), (1, a6), (i2, a8), (a6, a8)}
respectively. We take an arbitrary relation in Rreal , for
example, (a6, o7) and an arbitrary relation in Rout =
{(i2, o4), (i2, o7)(l4, o4), (l4, o7), (a6, o4), (a6, o7), (a8, o4),
(a8, o7)}, for example, (l4, o7). Then, we substitute (a6, o7)
with (l4, o7) in Rreal , which is

R′real = (Rreal − {(a6, o7)}) ∪ {(l4, o7)}

Now, R′real = {(a8, l4), (l4, o4), (l4, o7), (i2, a6), (1, a6),
(i2, a8), (a6, a8)}. Next, we use R′real to construct a new
circuit structure mutant G′ = 〈I,O,A,L,R′real〉. The mutant
G′ is the AIG model presented in Fig. 1b. Circuit Structure
Mutation can further be applied on the AIG in Fig. 1b to
generate the AIG in Fig. 1c. The mutation process is similar.

In practice, we could also consider randomly add or remove
inverters when doing Circuit Structure Mutation. For example,
given a relation (ca, cb), we could add a inverter between ca
and cb, when constructing R′real using this relation.

Algorithm 1 shows the process of the Circuit Structure
Mutation in our implementation. The input of Algorithm 1
is an AIGER file G. First, G is parsed to obtain the set of
components Comp and the maximum literal index imax (line
2). Then, the main mutation process will be iterated multiple

Algorithm 2: Feedback-guided strategy process
Input: Seed files F , Checker c
Output: Test suites T

1 Procedure FeedbackMutation(c, F):
2 while not timeout do
3 forall f ∈ F do
4 f ′ ← Mutate(f)
5 feedback ← c.run(f ′)
6 if feedback > 0 then
7 F ← F ∪ {f ′}
8 T ← F
9 return T

times according to the user-configured value iterations (line
3). In each iteration, a component comp is randomly selected
from the set (line 4) and a random literal index i is selected
in the range from 0 to the maximum literal index (line 5).
The random literal index i represents the (inverted) output
components in Comp or a constant. By assigning one input
of the component comp to the random literal index i, a new
component object comp′ is generated (line 7). The old compo-
nent object comp is substituted with the new component object
comp′ in the component set Comp (line 8 and 10). After the
iterations, a new AIGER file G′ constructed by the updated
component object set Comp is returned by the procedure (line
12). In practice, in case comp′ may cause the invalid circular
dependency of And gates, a circular dependency detector is
added after obtaining comp′. If a circular dependency is
detected, comp′ will be discarded (line 9). Given a group
of seed files, Hammer without feedback-guided strategy will
execute Algorithm 1 for each file in the group to generate
new test inputs. We next introduce how to enhance Circuit
Structure Mutation with feedback-guided strategy.

B. Feedback-guided strategy

Circuit Structure Mutation is an approach based on random
mutations. However, the random mutation strategy may be
not very efficient for some purposes, such as increasing test
coverage and find performance regressions. It is because the
mutation process has no guidance to achieve the purposes.
Therefore, we propose a feedback-guided strategy to guide
the mutation process towards the purpose. The main idea
of the feedback-guided strategy is to monitor the feedback
of running the mutant on the hardware model checkers and
put the mutant into the seed files if the feedback is positive.
For example, if the purpose is to increase the test coverage,
the mutants that cover new code are added to the seed
files to be mutated in later iterations. If the purpose is to
find performance regressions, the mutants that trigger minor
performance regressions are added to the seeds in order to
generate major performance regressions based on them.

Algorithm 2 describes the feedback-guided strategy in
Hammer. In this algorithm, inputs are the seed files F and
the checker c used for providing coverage information. First,



Algorithm 3: Differential testing process
Input: Seed files F , Hardware model checkers C
Output: issues

1 Procedure DifferentialTest(F , C):
2 issues← ∅
3 testsuite← FeedbackMutation(C, F)
4 forall test ∈ testsuite do
5 resultref ← null
6 forall c ∈ C do
7 result← c.run(test)
8 if resultref = null or crash then
9 resultref ← result

10 if result = crash then
11 issues← issues ∪ {(test, c)}
12 else if result 6= resultref then
13 issues← issues ∪ {(test, c)}
14 return issues

there is a while-loop on the seed set F that repeats forever
unless a timeout or user interruption occurs (lines 2 and 3).
In each iteration, for each file f in F , f is mutated to f ′

by Algorithm 1 (line 4). A feedback is obtained by running
checker c on the mutant f ′ (line 5). If feedback is positive,
the mutant f ′ is appended to seeds F (lines 6 and 7). At last,
this process returns the updated seeds as the test suite (line 9).

In practice, the design of the feedback function will affect
the effectiveness of Circuit Structure Mutation. In Hammer,
the feedback is positive when the mutant covers new paths
if the purpose is increasing the test coverage. If the purpose
is to find performance regressions, the feedback is positive
when the performance difference between two hardware model
checkers is larger than ten seconds. Users could design their
own feedback function according to their purposes.

C. Differential Testing Framework

To obtains the test oracles of the test inputs generated by
the feedback-guided Circuit Structure Mutation, we adopt a
differential testing framework. Differential testing is a widely
used technique for detecting bugs in software. The key insight
is to compare the results of different implementations for the
same task, if the results are not the same, there should be
an issue in one of the implementations. In Hammer, we use
differential testing to find both unsoundness issues and perfor-
mance regressions. For unsoundness issues, if two hardware
model checker implementations report different results or one
hardware model checker implementations crash while the other
does not, we think this test input triggered an unsoundness
issue in one of the checker implementations. For performance
regression, if one model checker implementation can give
the result in a short time while the other one solves the
same problem in a significantly longer time, we think this
test input triggered a performance regression in the latter
implementation. This differential strategy could also be used

to find performance optimization chances by comparing the
execution times between two hardware model checkers.

Algorithm 3 presents our differential testing process. The
inputs are the seed files F and the hardware model checker
set C used for differential testing. The checker set C can
consist of more than two items. The checker set C provides
feedback for FeedbackMutation to generate test suites
testsuite (line 4). Then, the process runs each c in C on
the test inputs testsuite (line 6 and 7). If a hardware model
checker crashes (line 10) or the hardware model checkers give
different results (line 12 with lines 8 and 9), the test inputs and
the corresponding checkers will be recorded in issues. Here,
the definition of the equivalence between result and resultref
can be defined according to the purpose. For example, for
unsoundness issue, we could define if one of the results is
unknown or timeout, or two results are both safe or unsafe,
these two results are equal. For performance regression, we
could define if one hardware model checker implementation
can solve in one second, while the other one takes more than
10 seconds, these two results are not equal. Finally, The issue
triggering set issues will then be manually investigated and
de-duplicated. For unsoundness issues, we could verify the
counterexample reported by the hardware model checker that
gives unsafe via simulation, if the counterexample is bogus, the
issue should be in the checker that reports unsafe, otherwise,
the issue should in the other one.

D. Implementation of Hammer

Fig. 2 presents the overall framework of Hammer. Given
a group of seed files, a file is randomly selected from the
seed files and put into the Circuit Structure Mutation process.
Then, according to Algorithm 1, Circuit Structure Mutation
generates mutant using the seed file. The mutant is then fed
into the differential testing framework. This framework com-
pares the execution results of the hardware model checkers.
If this mutant triggers interesting cases, such as performance
optimization chance and reliability issue, or it can increase the
code coverage, the framework will save this mutant as the test
input into the test suite, which was described in Algorithm 3.
On the other hand, the differential testing framework also
provides the information for feedback-guided strategy. If the
mutant triggers a significant performance difference between
two hardware model checkers in the differential testing frame-
work or the mutant can increase the test coverage in one
hardware model checker, the differential testing framework
will provide positive feedback to the feedback-guided strategy.
If the feedback is positive, the mutant will be added as
the new seed into the seed files and be selected in the
future iteration. The whole process will iterate until the user
terminates Hammer or expiring the timeout configuration.

The mutation component of the Hammer was implemented
in C programming language and it can be executed indepen-
dently for testing hardware model checkers without feedback-
guided strategy. The coverage-guided part of Hammer inher-
its from AFL which is implemented in C++ programming
language. We removed all native mutation strategies in AFL
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Fig. 3: AIG test input for triggering ABC unsoundness issue.

1 aag 41 0 22 0 19 1 3
2 2 0
3 4 0
4 6 0
5 8 0
6 10 0
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8 14 0
9 16 0

10 18 0
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12 22 0
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19 36 36
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23 44 44

24 1
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30 50 48 42
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33 56 54 7
34 58 56 9
35 60 58 11
36 62 60 13
37 64 62 15
38 66 64 17
39 68 21 19
40 70 68 23
41 72 70 25
42 74 72 27
43 76 74 29
44 78 76 31
45 80 78 33
46 82 80 35

Fig. 4: AIG test input for triggering ABC segmentation fault.

and made the mutation stage call our mutation core, which
leverages the AFL coverage-guided infrastructure to benefit
our mutation process. The performance-guided infrastructure
is implemented in shell script. The generated test inputs that
trigger interesting cases or increase test coverage are stored
in a folder. The differential testing framework in Go language
reads the folder and validates the hardware model checkers.

V. EVALUATION

A. Evaluation Setup

To evaluate the effectiveness of Hammer, we designed three
experiments for evaluating its bug-finding ability, test cover-

age performance, and performance-regression-finding ability
respectively. The experiments ran on a computer with Intel
i7-8700 CPU, 8GB RAM, and Ubuntu 18.04 operating system.

Bug-finding ability. In this experiment, we investigate whether
the vanilla Hammer (i.e., without feedback-guided strategy)
can find bugs in hardware model checkers as we expected. We
select three state-of-the-art hardware model checkers ABC [8],
nuXmv [9], and AVY [10] as the targets being tested. The
seeds come from the benchmarks on AIGER website [29] and
HWMCC 2017 [7]. The seeds include 3,610 files that span
from AIGER old format to AIGER-1.9.4 format. Before the
evaluation, we ran all three hardware model checkers through
the seeds to ensure none of the seeds trigger issues in these
three targets. The timeout for each checking is 30 seconds.

Test coverage performance. In this experiment, we investigate
whether the mutants generated by Hammer with coverage-
guided feedback can increase line, function, branch, and path
coverage. Here, we define the feedback function as if the
mutant can cover the new path that was not covered by the
previous test inputs, the feedback is positive. We evaluate the
code and path coverage on two open-source model checkers
ABC and AVY. The evaluation period is 6 hours for each
checker. We use pdr model checking engine for ABC. The
seeds used for this evaluation are sampled from the bench-
marks above. To fully squeeze the seeds in 6 hours, we build
up the seeds with 50 sampled benchmarks that can be solved
in 30 seconds. The code coverage was obtained by GCov [30]
tool and the numbers of explored paths are recorded by the
AFL framework. We compare the feedback-guided Hammer
with aigfuzz, AFL and the Hammer without feedback-
guided strategy (Hammer-noCov).

Performance-regression-finding ability. In this experiment,
we investigate whether the mutants generated by Hammer
with performance-guided feedback can find performance re-
gressions that are not uncovered before. Specifically, the goal
of the Hammer in this experiment is to find the test inputs
that trigger significant performance differences between ABC
and AVY. Here, the significant performance difference means
the same test input triggers more than 10 seconds execution
time difference between two hardware model checkers. The
timeout for each checking is 15 seconds. Note that if one
hardware model checker terminated in 5 seconds and the



TABLE I: Issues found by Hammer.

ID Tool Type Triggering command Location (if known)

1 ABC unsoundness abc -c "pdr" <aig> -
2 ABC assertion failure abc -c "pdr" <aig> satClause.h
3 ABC assertion failure abc -c "int" <aig> intCore.c
4 ABC assertion failure abc -c "tempor" <aig> aigMem.c
5 ABC segmentation fault abc -c "fold;bmc2" <aig> bmcBmc2.c
6 ABC segmentation fault abc -c "fold;bmc3" <aig> -
7 AVY unsoundness avy <aig> -
8 AVY assertion failure avy <aig> vecWec.h
9 AVY segmentation fault avy <aig> AigUtils.h

10 nuXmv segmentation fault check_property -

other one ran into timeout, we think this test input also
triggers a significant performance difference. We also use pdr
model checking engine for ABC. The feedback function is
defined as if the mutant triggers one more second execution
time difference between two hardware model checkers, the
feedback is positive. In this experiment, we collected the 243
benchmarks that can be solved by both ABC and AVY in
one second as the seed files. If performance-guided Hammer
could find significant performance difference using these seed
files, it will show the effectiveness of feedback-guided Circuit
Structure Mutation on finding performance regressions. The
evaluation period is 12 hours. We compare the feedback-
guided Hammer with aigfuzz and the Hammer without
feedback-guided strategy (Hammer-noPerf).

B. Evaluation Results
Bug-finding ability. In this experiment, Hammer found 10
unique issues in ABC, nuXmv and AVY. Table I presents
the details of the issues. The first column shows the names
of the hardware model checkers that contain the issues. The
second column specifies the types of the issues: "unsoundness"
refers to this issue that makes the checker produce an incorrect
checking result, "assertion failure" or "segmentation fault"
refers to the crash for different reasons. The third column
gives the commands for triggering the issues and the fourth
column gives the location of issues. Each issue can be found
many times in the evaluation, we have carefully de-duplicated
the issue triggers to avoid duplicate, while the segmentation
fault in nuXmv is difficult to de-duplicate due to the lack
of debugging information. We next present some reduced
examples of the issues found in the experiment.

The AVY unsoundness issue was presented in Fig. 1c, we
have reported this issue to the developers and it has not been
fixed yet. If we remove the invariant constraint in Fig. 1c, the
test input will trigger the assertion failure in AVY. Next, we
show two bug samples in ABC. Fig. 3 presents a test input that
triggers an unsoundness issue in ABC. This small test input
was reduced from a large AIG file that triggers the same issue.
It should be unsafe, while ABC reports safe. It is due to some
ABC commands assume that the latch is zero-initialized and
this corner case uncovers this unsound assumption by building
a latch that is initialized by itself. Fig. 4 presents a test input
that triggers ABC segmentation fault with the command "abc -
c "fold;bmc3" <aig>" which calls the bounded model checking

engine of ABC. The segmentation fault is due to the significant
memory usage while checking this case, however, using other
bounded model checking engines, such as "bmc2", will not
encounter the segmentation fault. The rest issue-triggering files
are too large, so we do not incorporate them into this paper.

The evaluation results show that Hammer is effective in
finding issues in hardware model checkers. The issues are
diverse and mostly related to the hardware model checker
usability. The issues in hardware model checkers are difficult
to be found, since the code base of the core components is
small, which is unlikely to contain many issues. Besides, in
the evaluation, we observed that some mutants of Hammer
make the checkers take significant memory usage, while the
seeds do not, which shows the potential usage of Hammer
for finding performance issues and evidences that the mutants
give more stress on the checkers than the seeds.

Test coverage performance. The results of this experiment
are presented in Table II. The first four lines in Table II
present the numbers of lines, functions, branches, and paths
covered by the seeds, aigfuzz, AFL, Hammer-noCov and
Hammer respectively. We first investigate the code coverage
matrices. Table II shows that the lines, functions, and branches
explored by AFL, Hammer-noCov, and Hammer are consis-
tently higher than the seeds, which means the mutation-based
strategies can generate more diverse test inputs than the seeds.
The highest numbers for each matrix are highlighted in grey.
Although the differences are small, it still shows that Hammer
performs best on most matrices. One possible explanation of
the minor code coverage increments is the checking algorithms
in hardware model checkers are highly recursive. Thus, the
same lines, branches, and functions are called repeatedly dur-
ing the checking process. However, different test inputs could
trigger different paths. We hence investigate the path coverage.
Table II provides the number of paths explored by the seeds,
AFL and Hammer respectively. The 50 seeds initially explore
50 paths, and the mutation-based strategies explore much more
paths than the seeds. According to the results, the numbers of
paths explored by Hammer are significantly higher (about 25%
increment) than others, which shows the strength of Hammer.
We also compare our mutation-based fuzzer Hammer with the
generation-based fuzzer aigfuzz, which is presented in the
second line of Table II. We ran aigfuzz with the default
configuration for 6 hours and obtained the code and path



TABLE II: Numbers of lines, functions and branches covered by the tools in one hour.

ABC (pdr) AVY
lines func. bran. paths lines func. bran. paths

seeds 6,082 495 3,042 50 13,946 3,256 10,766 50
aigfuzz 6,019 498 2,991 1,213 13,835 3,252 10,660 2,185

AFL 6,208 503 3,141 1,295 14,004 3,262 10,847 2,812
Hammer-noCov 6,210 504 3,134 1,301 14,048 3,266 10,888 2,926

Hammer 6,210 504 3,134 1,604 14,049 3,266 10,887 3,520

TABLE III: Numbers of significant performance differences
found in ABC (pdr) and AVY by Hammer in 12 hours.

Tool #total #ABC #AVY

aigfuzz 12 0 12
Hammer-noPerf 291 154 137

Hammer 324 199 125

coverage. The results of aigfuzz show that the generation-
based testing tool covers fewer lines, functions, and branches
than the mutation-based testing tool and their seeds in 6
hours, which evidences the general advantage of mutation-
based testing tool on testing hardware model checkers: high-
quality seeds provide a nice starting point, thus the mutants
can be more effective for exploring the code than the randomly
generated test inputs.

In summary, Hammer significantly outperforms the seeds
and AFL regarding the number of explored paths, which shows
the effectiveness of Circuit Structure Mutation and partially
explains why Hammer can find the issues that cannot be
triggered by the seeds. The increment from Hammer-noCov
to Hammer shows the contribution of coverage guidance. Even
though without coverage information, Hammer achieved close
code exploration numbers comparing to coverage-guided AFL,
which shows the strength of Circuit Structure Mutation.

Performance-regression-finding ability. Table III presents the
results for this experiment. The second column refers to the
total number of significant performance differences found
by the corresponding tool in 12 hours. We can see that
aigfuzz can only find 12 significant performance differences
while both Hammer-noPerf and Hammer found more than
one hundred significant performance differences in 12 hours,
which shows the effectiveness of Circuit Structure Mutation on
finding the performance regression in hardware model check-
ers. With feedback-guided strategy, Hammer can find 30 more
significant performance differences, which shows the effec-
tiveness of the feedback-guided strategy. Then, we would like
to know whether Hammer can find performance optimization
chances (i.e., one checker slower than other) in both checkers.
First, in Table III, we can see that aigfuzz can only find
the optimization chances in AVY, while Hammer-noPerf
and Hammer can find the optimization chances in both ABC
and AVY. As ABC had better overall performance than AVY in
the previous competition [7], the optimization chances in ABC
will be more interesting. We can note that Hammer can find
more optimization chances in ABC than Hammer-noPerf
and no much fewer optimization chances in AVY.

In summary, Hammer shows its effectiveness on finding
performance regressions by finding many significant perfor-
mance differences between ABC and AVY using the seeds
that take only one second to solve. The increment from
Hammer-noPerf to Hammer shows the contribution of per-
formance guidance. Even though without performance guid-
ance, Hammer-noPerf can significantly outperform the only
existing tool aigfuzz on finding the performance differ-
ences. This experiment shows that the developers of hardware
model checker can use Hammer to find the performance
regression in their developing process.

VI. CONCLUSION

In this paper, we propose Circuit Structure Mutation, a
simple but effective approach for generating test inputs for
hardware model checkers and implemented a feedback-guided
mutation-based testing tool Hammer. This tool can be used
to find reliability bugs, increase test coverage and find per-
formance regressions in hardware model checkers. In our
evaluation, Hammer shows its effectiveness. First, Hammer
found 10 issues in the state-of-the-art hardware model check-
ers, which shows its ability on finding bugs. On the aspect
of test coverage, Hammer achieved more test coverage than
the previous tools AFL and aigfuzz. Last, it can efficiently
uncover the significant performance difference between two
hardware model checkers, which shows its ability on finding
performance regressions and optimization chances.

Besides, Hammer has wide potential usages. For example,
it can be used by the hardware model checking community to
validate the correctness and reliability of the implementation,
detect potential performance issues, and generate benchmarks
for HWMCC. Meanwhile, the key idea of Circuit Structure
Mutation could be also adapted to test other hardware design
and verification tools. It will be an interesting future work to
extend Circuit Structure Mutation beyonds AIG input format.
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